Contact
QR code for the current URL

Story Box-ID: 869027

Apium Additive Technologies GmbH Siemensallee 84 76187 Karlsruhe, Germany http://www.apiumtec.com/
Contact Mr Philipp Renner +49 721 68030870

Topology optimization and our Apium P-Series bring your product development to a new level

(PresseBox) (Karlsruhe, )
Reduction in material usage and increased cost efficiency are two important manufacturing-based goals. The concept parts creation for these two goals is possible with topology optimization tools and Apium P Series 3D printers, which are designed to produce your optimized parts with complex geometries.

Recently, topology optimization has become increasingly important as a versatile design and development method for lightweight construction. The typical fields of application range from automotive construction to aerospace technology to other branches of mechanical engineering
Topology optimization is a computer-based calculation method for product development, which can detect the optimization potentials very early in the development process. With the help of special software tools, prototypes can be designed with significantly less material. Therefore it is necessary to determine the best distribution of the material for a given installation space while observing different boundary conditions. This distribution and material-saving offers many advantages. However, the most important advantage results from the reduction of the component mass. This material saving generally reduces material costs, while the overall weight reduction leads to considerable fuel reduction

Goals of topology optimization:
  • Stress-optimized design
  • Reduced component mass
  • Optimized stiffness and natural frequency
In many cases, topology optimized parts have more organic and complex geometry with same functionality. As conventional manufacturing technologies are not designed for such geometries, additive manufacturing as a complementary production technology enables a design driven manufacturing process to produce optimized parts. Additive manufacturing offers a high degree of design freedom, small series production at reasonable unit costs and a strong individualization of products

Apium's research and development team has dealt with this topic and carried out a number of tests. Using Apium's P-Series 3D printers, you can benefit from the capabilities of their unique FFF 3D printing technology for high performance polymers in combination with topology optimization for an accelerated product development.

In Figures 1 and 2, a conventionally designed bearing seat as well as a topology optimized bearing seat can be seen - both manufactured in our Apium P155 printer. The optimized part offers considerable weight reduction and shorter production time compared to conventional design without sacrificing the "original" stability.

As topology optimization in combination with additive manufacturing offers great benefits, good results can be assured if the problem or the load is sufficiently known. Components which are optimized for a specific case can no longer withstand a load when the force introduction point changes. For a successful topology optimization, it is therefore important to recognize in advance all the risks of a possible component failure. This requires sufficient experience.

One way to assess the risks during the development process is to carry out tests on prototypes. Additive manufacturing methods such as the Fused Filament Fabrication (FFF) process can be used for rapid prototyping, which can play out its advantages with topologically optimized components. Short-term changes to your prototype can be quickly adapted using the 3D printing technology and can be reprinted with lower costs.

This synergy between additive manufacturing and topology optimization has been indispensable especially with the concept of Industry 4.0 and has become an important component in product development when it comes to material efficiency and sustainability.

Website Promotion

Website Promotion
Homepage Apium Additive Technologies GmbH

Apium Additive Technologies GmbH

Wir erforschen, entwickeln und produzieren Filamente aus Hochleistungspolymeren für die Fused Filament Fabrication 3D-Druck Technologie sowie die entsprechenden 3D-Drucker zur Verarbeitung dieser. Nach intensiver Forschungsarbeit sind wir das erste Unternehmen weltweit gewesen, welches PEEK (Polyetheretherketon) für die FFF 3D-Druck Technologie druckbar gemacht hat. Als Pioniere auf diesem Gebiet stellen wir die beste und zuverlässigste Druckqualität auf dem Markt sicher. Mit unserer Expertise und Erfahrung in funktionellen Anwendungen, zusammen mit unserer Forschungsarbeit, bieten wir ein einzigartiges Kompetenzzentrum für kleine und mittelständische Unternehmen aus Bereichen der Industrie welche Hochleistungspolymere für die anspruchsvollsten Umgebungen und Anwendungen benutzen.

Mit unseren starken Kernkompetenzen streben wir danach der größte Technologie Supplier von Filamenten aus Hochleistungspolymeren sowie FFF basierten 3D-Druckern im Europäischen Markt zu werden. Unser Ziel ist es, industrielle Standards in Bezug auf Qualität und Zuverlässigkeit von FFF 3D gedruckten Hochleistungspolymeren zu setzen. Als Kompetenzzentrum ist unser Anspruch präsent auf dem Markt zu sein und langfristig die Marktführer Rolle zu übernehmen. Dank unseres Know-Hows und unserer Expertise im Bereich des 3D-Drucks stellen wir für unseren Kunden die höchste Qualität und den besten Service sicher.

The publisher indicated in each case (see company info by clicking on image/title or company info in the right-hand column) is solely responsible for the stories above, the event or job offer shown and for the image and audio material displayed. As a rule, the publisher is also the author of the texts and the attached image, audio and information material. The use of information published here is generally free of charge for personal information and editorial processing. Please clarify any copyright issues with the stated publisher before further use. In case of publication, please send a specimen copy to service@pressebox.de.
Important note:

Systematic data storage as well as the use of even parts of this database are only permitted with the written consent of unn | UNITED NEWS NETWORK GmbH.

unn | UNITED NEWS NETWORK GmbH 2002–2024, All rights reserved

The publisher indicated in each case (see company info by clicking on image/title or company info in the right-hand column) is solely responsible for the stories above, the event or job offer shown and for the image and audio material displayed. As a rule, the publisher is also the author of the texts and the attached image, audio and information material. The use of information published here is generally free of charge for personal information and editorial processing. Please clarify any copyright issues with the stated publisher before further use. In case of publication, please send a specimen copy to service@pressebox.de.