Die Güte technischer Oberflächen ist in vielen Anwendungsfeldern ein wesentlicher Faktor für die Qualität des Gesamtergebnisses. Nach DIN-Standard wird Rauheit taktil mit einer sehr feinen Messspitze bis in den Nanometerbereich gemessen. Dazu muss das Messobjekt je-doch absolut ruhig liegen, was für große Flächen sehr zeitaufwändig ist. Zudem wird die Oberfläche berührt, was oft zur Beschädigung des Messobjekts führt. Auch alternative optische Messverfahren benötigen in der Regel weiterhin einen ruhigen Messort. Dies gilt insbe-sondere bei spiegelnden Oberflächen, die sich vielen Verfahren aufgrund der speziellen optischen Eigenschaften vollständig verschließen.
Im vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Verbundprojekt OptOCHar wird ein neuartiges Verfahren für die flächenhafte, optische Rauheitsmessung konzipiert. Dieses ist durch eine spezielle Analyse von Laserreflexionen für den Einsatz direkt im Produktionsprozess geeignet.
Einsatz von Streulicht-Sensoren zur Oberflächencharakterisierung
Das im Projekt OptOCHar zu erforschende Laserstreulicht-Messverfahren der Universität Bremen ist prädestiniert für die flächenhafte Charakterisierung von metallischen, spiegelnden Oberflächen. Die Analyse erfolgt auf Basis einzelner, digital aufgenommener Reflexionsbilder einer Laserbeleuchtung der zu prüfenden Oberflächen. Diese müssen nicht exakt fokussiert sein, so dass das Messobjekt auch in unruhiger Umgebung, etwa direkt im Fertigungsprozess, geprüft werden kann.
Das Verfahren nutzt dabei die besonderen Eigenschaften des Laserlichts aus, das an den besonders kleinen Unebenheiten markante Muster generiert. Diese werden durch eine aus-geklügelte Bildverarbeitung erfasst und ausgewertet. Mit einer ausreichend hohen Verarbeitungsgeschwindigkeit können im Vergleich zu anderen optischen Inline-Sensoren vollständige Prüfungen des gesamten Erzeugnisses direkt im Fertigungsprozess erfolgen. Dazu ist eine beträchtliche Geschwindigkeitssteigerung erforderlich, die im Projekt durch den Einsatz von speziellen FPGA-Bildverarbeitungssystemen der Firma CoSynth erreicht werden soll.
Im Projekt wird ein für den Einsatz im Fertigungsprozess geeigneter Demonstrator konzipiert, der für eine maximale Verarbeitungsgeschwindigkeit optimiert ist. Der Sensor-Demonstrator wird dann in unterschiedlichen Szenarien eingesetzt. Beim assoziierten Partner Tata Steel Plating Hille & Müller GmbH wird das System im Walzprozess evaluiert. Die Eignung des Systems für die schnelle, flächenhafte Analyse von Oberflächen in dedizierten Messgeräten wird bei Fries Research and Technology GmbH untersucht.
Das Verfahren ist für viele Bereiche nutzbar, z.B. für die Halbleiterindustrie, die Solarindustrie, die Medizintechnik, die Stahlproduktion und die metallverarbeitende Industrie. In der Halbleiterindustrie beeinflusst eine zu hohe Rauheit die Qualität und Funktionalität elektronischer Bau-teile nachteilig, in der Solarindustrie hingegen verbessert ein gewisses Maß an Rauheit die Funktionalität der Zellen. In der Stahlproduktion müssen produzierte Oberflächen eine definierte Rauheit aufweisen, weil Abweichungen zu Qualitätseinbußen führen. Hier kann das Sensorsystem prozessbegleitend die erforderlichen Qualitätsprüfungen durchführen.
Nach Projektende werden die Verbundpartner den Sensor zur Serienreife bringen und in unterschiedlichen Konfigurationen auf den Markt bringen. Das mit knapp 1,4 Millionen Euro durch die BMBF-Initiative "KMU-innovativ: Photonik / Optische Technologien" geförderte Projekt läuft seit März 2015. Die Verbundpartner CoSynth GmbH & Co. KG aus Oldenburg, Fries Research and Technology GmbH aus Bergisch Gladbach, Institut für Messtechnik, Automatisierung und Qualitätswissenschaft der Universität Bremen und als assoziierter Anwendungs-partner Tata Steel Plating Hille & Müller GmbH aus Düsseldorf werden für drei Jahre an dem Thema forschen und Anfang 2018 die Ergebnisse präsentieren.