Nachhaltige Rohstoffe für die Energiewende
Das Recycling von Lithiumionen-Batterien und ihren Produktionsabfällen ist ein wesentlicher Faktor für die zukünftige Rohstoffgewinnung. „Gebrauchte Lithiumionen-Batterien wieder in den Kreislauf zu bringen, ist eine Grundvoraussetzung für das weitere Wachstum der Elektromobilität", sagt Michael Deutmeyer, Geschäftsführer von EAS Batteries. "Wir brauchen eine nachhaltige Versorgung mit Rohstoffen – auch um die kommenden Anforderungen der EU-Batterieverordnung zu erfüllen."
Der Forschungsverbund „DiLiRec" konzentriert sich auf die optimierte Batteriezellsortierung und -demontage sowie die Entschichtung der Elektroden, um ein effizientes Batterierecycling zu ermöglichen. Unterstützt wird die Separation der sogenannten Aktivmasse durch automatisierte und digitalisierte Prozesse. Insbesondere die LFP-Kathoden großformatiger Rundzellen, wie die von EAS, bieten ein hohes Recyclingpotenzial. Die Zellen können komplett abgewickelt und ihre Bestandteile sortenrein getrennt werden. „Bei erfolgreicher Durchführung des Projekts können die Ergebnisse direkt in den Bau deutscher und europäischer Recyclingkapazitäten einfließen. Das reduziert Rohstoff- und Produktabhängigkeiten“, sagt Lukas Brandl, COO von BLC. „Durch den Ausbau der Recyclingtechnologien wird der Produktionsstandort Deutschland gestärkt und die Effizienz in der Rohstoffnutzung erhöht.“
Nachhaltige Prozesse für das LFP-Recycling
Das Forschungsnetzwerk „DiLiRec" untersucht zwei Methoden zur Rückgewinnung des Kathodenmaterials Lithiumeisenphosphat (LFP) aus zylindrischen Zellen. Im direkten Recycling strebt es an, das LFP als Aktivmaterial vollständig zurückzugewinnen und in aufbereiteter Form wiederzuverwenden. Im Standard-Recyclingverfahren sollen Vorstufen der LFP-Synthese isoliert werden. Sie dienen dann als Sekundärrohstoffe. Die Forschungspartner entwickeln und vergleichen für jede Methode zwei Prozessrouten: ein nassmechanisches und ein trockenmechanisches Entschichtungsverfahren der Elektroden. Durch die systematische Erfassung von Stoff- und Prozessdaten während der einzelnen Recycling-Schritte sollen die Voraussetzungen für ein nachhaltiges und kostengünstiges LFP-Recycling geschaffen werden. Künstliche Intelligenz (KI) steuert die semantische Datenerfassung und unterstützt das gesamte Design der Prozesskette im Sinne der Wettbewerbsfähigkeit. „Im Gegensatz zu anderen Batteriezellchemien wie NCM und NCA können für die Rückgewinnung des Lithiums aus LFP potenziell weniger aufwendige und weniger energieintensive hydrometallurgische Schritte eingesetzt werden“, sagt Sebastian Hippmann, Wissenschaftlicher Mitarbeiter für Recycling und Grüne Batterie am Fraunhofer IKTS. „Darüber hinaus ist ein Direktrecycling von LFP aufgrund seiner Materialeigenschaften vielversprechend.“