Für die Compoundier-Industrie hat das initiale Aufschmelzen eine große Bedeutung, da bis zu 80 Prozent der gesamten Energie in der Plastifizierzone und hier speziell in der ersten Knetblockstufe eingebracht wird. Ein optimierter beziehungsweise minimierter Energieeintrag hätte daher ein vielversprechendes Potenzial, die Wirtschaftlichkeit zu verbessern und die Materialeigenschaften durch eine schonendere Verarbeitung zu verbessern.
Plastische Deformation wird sichtbar
Für die systematische Untersuchung des Energieeintrages in der Aufschmelzzone gleichläufiger Doppelschneckenextruder hat das Fraunhofer LBF ein neuartiges Werkzeug entwickelt, mit dessen Hilfe sich der Querschnitt der Plastifizierzone visualisieren lässt. Dazu setzen die Wissenschaftler eine Hochgeschwindigkeitskamera ein. Mit einer Auflösung von 2.000 Einzelbildern pro Sekunde konnten sie erstmalig die Bewegung, Deformation und das initiale Aufschmelzen von Kunststoffgranulaten darstellen, dokumentieren und bewerten. Diese Aufnahmen wurden mit einer hochauflösenden Drehmomenten-Messung kombiniert. Auf diese Weise lässt sich nun der mechanische Energieeintrag ortsaufgelöst jedem visualisierten Zustand zuordnen und die theoretische Temperaturerhöhung berechnen.
Mit ihrem neuartigen Blick in die Aufschmelzzone konnten die LBF-Wissenschaftler beispielsweise die plastische Deformation eines Polypropylengranulates beobachten und dokumentieren. Es zeigte sich, dass das Granulat durch eine massive plastische Deformation zum Fließen gebracht wird und lokal initial innerhalb von Sekundenbruchteilen plastifiziert. Dabei wird das Granulat zunächst zwischen der aktiven Flanke und der Zylinderwand verklemmt. Anschließend folgt eine Deformation, welche in zwei Phasen eingeteilt werden kann: Zunächst wird das Granulat verdichtet und in das freie Volumen gepresst. Anschließend wird in dieses vorkompaktierte Volumen massiv Energie durch weitere plastische Deformation eingebracht.
Diese Vorgänge dauern bei einer Schneckendrehzahl von 1200 Umdrehungen pro Minute nur rund fünf Millisekunden. Neben der plastischen Deformation im Zwickelbereich kommt es auch zu einer Kompression vor der aktiven Flanke. Die LBF-Wissenschaftler konnten auch klarstellen, dass neben den Materialeigenschaften vor allem geometrische Aspekte, wie beispielsweise die Granulatgröße und –form sowie das freie Volumen im Knetblockbereich, einen wesentlichen Einfluss auf das Aufschmelzen haben. Die Quantifizierung erfolgt mit einer hochauflösenden Drehmomentenmessung.
Neben der Quantifizierung der unterschiedlichen Mechanismen liegt eine weitere Herausforderung für das Fraunhofer LBF auch in der Abbildung eines für den Anwender praktikablen Modells. In dieser Frage arbeitet das Institut eng mit der Kunststofftechnik Paderborn (KTP) zusammen. Durch die Kopplung beider Kompetenzen kann ein direkter Mehrwert für die Compoundier-Industrie erzielt werden.
Über den Bereich Kunststoffe des Fraunhofer LBF
Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über den Werkstoff, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.