Wenn neue Kunststoffe entwickelt oder existierende optimiert werden sollen, beginnt die Prozesskette häufig mit der Synthese neuer Additive, Monomere und Hilfsstoffe oder der Polymere selbst. Gelingt der grundsätzliche Machbarkeitsnachweis im Labor, werden diese im nächsten Schritt unter realitätsnahen Bedingungen verarbeitet und geprüft. In der Regel sind im chemischen Labor aber nur wenige Gramm einer Substanz synthetisierbar. Das reicht normalerweise aus, um physikalische, chemische oder thermische Eigenschaften der daraus hergestellten Materialien untersuchen zu können.
Größere Mengen davon sind allerdings notwendig, um verlässliche Aussagen über die Einsatzmöglichkeiten dieser Materialien treffen zu können. Denn insbesondere praxisrelevante Parameter, wie beispielsweise mechanische Eigenschaften, Dauerhaftigkeit, Haptik oder Optik, lassen sich erst beurteilen, wenn die Materialien unter realitätsnahen Bedingungen verarbeitet werden. Dies gilt vor allem für thermoplastische Werkstoffe, bei denen die Prozessparameter beim Verarbeiten einen entscheidenden Einfluss auf die abschließenden Produkteigenschaften haben. Für die Verarbeitung auf praxisrelevanten Maschinen sind mindestens einige hundert Gramm, besser jedoch mehrere Kilogramm, eines Materials nötig.
Um sowohl eigene Entwicklungen des Instituts als auch solche, die von Industriekunden beauftragt wurden, aus einer Hand unter geeigneten Bedingungen untersuchen zu können, hat das Fraunhofer LBF das neue Kilolabor eingerichtet. Darin ist die Synthese unterschiedlichster Substanzen im Kilogrammmaßstab möglich, so dass diese im eigenen Technikum weiterverarbeitet und für entsprechende Prüfungen bereitgestellt werden können. Hierzu stehen Reaktoren und Autoklaven bis zu einem Volumen von 20 Litern in verschiedenen Ausführungen zur Verfügung, die Reaktionen in Temperaturbereichen von -80° bis 250° Celsius, unter Inertbedingungen, bei Drücken bis zu 60 bar oder im Vakuum ermöglichen. Das Up-scaling einer Reaktion ist dabei mehr als nur eine Vervielfachung des Reaktionsvolumens. Zusätzliche Aspekte, wie eine veränderte Wärmeübertragung, eine sichere Handhabung größerer Mengen an Reaktanden und Produkten sowie deren Vor- und Nachbereitung sind zu berücksichtigen.
Kilolabor ermöglicht den Brückenschlag
Im neuen Kilo-Labor des Fraunhofer LBF können beispielsweise Reaktionen wie die Synthese von Polymeren mit speziellen Architekturen durchgeführt werden, die etwa als haft- oder phasenvermittelnde Kunststoffadditive eingesetzt werden können, um die mechanischen Eigenschaften, Transparenz oder Adhäsion zu artfremden Materialien zu verbessern. Auch der Einsatz von gasförmigen Monomeren und Reaktanden ist möglich. So können beispielsweise thermoplastische Elastomere aus Styrol und Butadien durch anionische Polymerisation und anschließende Hydrierung hergestellt werden. Weitere Synthesebeispiele sind die Herstellung von wässrigen Polymerdispersionen, die als Bindemittel dienen können, Additive wie beispielsweise Flammschutzmittel oder Stabilisatoren, Härter für Epoxidharze sowie auch die Oberflächenfunktionalisierung von Fasern oder (Nano-)Füllstoffen.
Chemische Lösungsansätze zu speziellen Kundenfragestellungen kann das Fraunhofer LBF mit dem Kilo-Labor auf den nächsten Maßstab übertragen. Die daraus hervorgehenden Produkte können entweder im LBF-eigenen Verarbeitungstechnikum weiterverarbeitet oder dem Kunden für eigene Anwendungstests bereitgestellt werden. Kunden, die bereits eine Entwicklung im Labormaßstab erarbeitet haben, können diese vom LBF auf den Kilogrammmaßstab übertragen lassen, um so deren Anwendbarkeit beurteilen zu können. Weitere Informationen zum Projekt unter www.lbf.fraunhofer.de/kilolabor.
Über den Bereich Kunststoffe des Fraunhofer LBF
Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über den Werkstoff, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie Thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.