Contact
QR code for the current URL

Story Box-ID: 1204976

Fraunhofer Institut LBF Bartningstr. 47 64289 Darmstadt, Germany http://www.fraunhofer.de
Contact Mr Dr. Michael Großhauser +49 6151 7058757

Standard-compliant flame retardancy for post-consumer recyclates in specific applications

(PresseBox) (Darmstadt, )
At a time when environmental sustainability is paramount, recyclates are of central importance in industry. Due to EU regulations and waste reduction targets, their use has increased significantly. However, a major challenge is to ensure that post-consumer recyclates meet safety standards, especially in terms of flame retardancy. Upgrading with effective halogen free flame retardants is essential. Teams of experts at the Fraunhofer Institute for Structural Durability and System Reliability LBF are working intensively on EU regulations and the need for halogen free flame retardancy in specific applications. The focus is on technical and strategic considerations from which many industries can benefit. Fraunhofer LBF will present the results at the Plastics Recycling Show Europe, Amsterdam, June 19-20, 2024, booth A22.

In numerous applications, such as automotive engineering, electronics and electrical engineering, cables and films, plastics must be flame-retardant. To this end, the researchers are investigating a wide range of plastics from various sources (PCR and PIR). These include polypropylene (PP) and polycarbonate/acrylonitrile butadiene styrene (PCABS) from WEEE as well as PP and linear low-density polyethylene (LLDPE) from the packaging sector; polyamide 6 from maritime applications, polyamide 66 from production waste and PET from printed packaging films. Depending on the individual application, the recyclates are compounded with flame retardants, glass fibers, processing aids and stabilizers.

Proven resistance to flames

With adapted additive formulations, satisfactory flame-retardant properties were achieved for all types of plastic from different waste streams. For films made of polypropylene (PP) and polyethylene (LLDPE), a classification according to DIN 4102 - B2 for building materials was achieved. Glass fiber-reinforced polyamide 6 (PA 6), polyamide 66 (PA 66) and polyethylene terephthalate (PET) as well as unfilled PA 66 and PCABS achieved the UL 94 V-0 classification.

The current results regarding the flame retardancy of plastic recyclates are very promising. The research shows that recyclates of different types and origins can be effectively treated with flame retardants. These results pave the way for further investigations and developments to improve the fire protection properties of recycled plastics. In this way, manufacturers, and users of recyclates can contribute to a more sustainable and safer future for plastics recycling initiatives.

Methods for the characterization of recyclates

The composite materials are further processed into test specimens by injection molding and film casting and then extensively tested for their flame retardancy and mechanical properties. In addition, the materials are subjected to thermal aging to analyze the change in properties over time.

Various methods are used to characterize the recyclates and compounds, including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and oxidation induction temperature (OIT).

Flame retardancy tests are carried out in accordance with UL 94 for test specimens and DIN 4102-B2 for films as well as fire behavior tests in the cone calorimeter (ISO 5660). To assess the electrical fire behavior, Comparative Tracking Index (CTI) according to DIN EN 60112 and Glow-Wire Ignition Temperature (GWIT) according to IEC 60695-2-13 are tested. The strength properties are determined in accordance with DIN EN ISO 527, and thermal ageing is carried out in a convection oven at different temperatures in accordance with ISO 4577.

More information:
Additives - Fraunhofer LBF
https://www.lbf.fraunhofer.de/en/competencies-researchdivisions/plastics/additives.html 

Website Promotion

Website Promotion

Fraunhofer Institut LBF

The Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt has stood for the safety and reliability of lightweight structures since 1938. With its expertise in the fields of structural durability, system reliability, vibration technology and polymer technology, the institute today offers solutions for three important cross-cutting topics of the future: lightweight system design, functional integration and cyber-physical mechanical engineering systems. The focus is on solutions for social challenges such as resource efficiency and emission reduction as well as future mobility, such as electromobility and autonomous, networked driving. Clients come from sectors such as vehicle construction, aviation, mechanical and plant engineering, energy technology, electrical engineering, medical technology and the chemical industry. They benefit from the proven expertise of around 400 employees and state-of-the-art technology in more than 17,900 square meters of laboratory and testing space. www.lbf.fraunhofer.de

The publisher indicated in each case (see company info by clicking on image/title or company info in the right-hand column) is solely responsible for the stories above, the event or job offer shown and for the image and audio material displayed. As a rule, the publisher is also the author of the texts and the attached image, audio and information material. The use of information published here is generally free of charge for personal information and editorial processing. Please clarify any copyright issues with the stated publisher before further use. In case of publication, please send a specimen copy to service@pressebox.de.
Important note:

Systematic data storage as well as the use of even parts of this database are only permitted with the written consent of unn | UNITED NEWS NETWORK GmbH.

unn | UNITED NEWS NETWORK GmbH 2002–2024, All rights reserved

The publisher indicated in each case (see company info by clicking on image/title or company info in the right-hand column) is solely responsible for the stories above, the event or job offer shown and for the image and audio material displayed. As a rule, the publisher is also the author of the texts and the attached image, audio and information material. The use of information published here is generally free of charge for personal information and editorial processing. Please clarify any copyright issues with the stated publisher before further use. In case of publication, please send a specimen copy to service@pressebox.de.