Univ.-Prof. Dr.-Ing. Daniel Müller-Gritschneder will die Optimierung der Elektromotoren durch die Verbesserung der Motorsteuerung mittels maschinellem Lernen („Künstliche Intelligenz“, kurz KI) erreichen. Er ist Professor für Computer Architecture am Institut für technische Informatik der Technischen Universität Wien: „Die Modellierung mit Enterprise Architect hilft uns im EU-Projekt ECOMAI dabei, die sehr unterschiedlichen Bereiche der Motorensteuerung und des maschinellen Lernens zu verbinden. Wir konnten in diesem Forschungsgebiet im Vorprojekt COMPACT sehr viel lernen und haben das nun in konkrete Anwendungen übergeführt.“
Das Kürzel ECOMAI steht dabei für “Ecological Motor Control and Predictive Maintenance with AI”. Gerechnet wird etwa mit Energie-Einsparungen von rund fünf Prozent. Durch eine vorsorgliche Wartung mittels KI soll zudem über die Reduzierung von Ausfällen von Elektromotoren eine größere Wirkung erzielt werden. Geleitet wird das Forschungsprojekt von Infineon, die weltweit im Bereich der Mikrochips eine führende Rolle innehaben. Projekt-Koordinatoren für Österreich sind Sparx Systems Europe und der Messtechnik-Spezialist usePAT.
Die Zahl der eingesetzen Elektromotoren wächst stark
Die Zahl der eingesetzten Elektromotoren nimmt derzeit sowohl im Privat- wie im Industriebereich stark zu, beschleunigt durch die fortschreitende Automatisierung. Die meisten Menschen nutzen täglich unzählige Elektromotoren, auch wenn sie diese oft nicht direkt bemerken. Die Bandbreite reicht von sehr großen Motoren z.B. in Aufzügen oder elektrischen Türen bis hin zu ganz kleinen, etwa in Laptoplüftern oder medizinischen Geräten.
Die Studie „Zukunftsmarkt Effiziente Elektromotoren“ (Karlsruhe, 2011) schätzt, dass weltweit 40 % des Stromverbrauchs (70% des Stromverbrauchs der Industrie) durch Elektromotoren verursacht werden. So entstehen jährlich etwa sechs Milliarden Tonnen CO2-Emissionen, das entspricht ungefähr einem Fünftel der weltweiten CO2-Emissionen. Ohne weitere Einsparmaßnahmen wird laut Studie bis 2030 fast eine Verdopplung des weltweiten Stromverbrauchs durch Elektromotoren erwartet.
Peter Lieber, Gründer und Geschäftsführer von Sparx Systems Europe: „Wir freuen uns sehr, dass wir in diesem zukunftsweisenden Forschungsprojekt mit Enterprise Architect mitwirken können. Die Modellierung eignet sich gerade in derart komplexen Systemen, um die Zusammenhänge besser verstehen zu lernen und gleichzeitig alle Entwicklungsschritte nachvollziehbar im Auge zu behalten. Um neue Zugänge der Motorensteuerung und –wartung zu finden, müssen viele Versuche durchlaufen und dokumentiert werden, um letztlich den besten Ansatz zu finden. Dafür ist die Modellierung ideal geeignet.“
TinyML: Die strom- und kostensparende Variante der Künstlichen Intelligenz
Im Projekt ECOMAI kommt – da es sich um eine sehr kostensensitive Anwendung handelt - zur Senkung des Stromverbrauchs und zur Reduzierung von Wartungszeiten von Elektromotoren KI auf stromsparenden Chips (TinyML) zum Einsatz. Müller-Gritschneder ist Spezialist für TinyML, einer Methode zur Übertragung von maschinellem Lernen auf winzige, kostengünstige Mikrocontroller (Microchips). Während nämlich klassische KI-Anwendungen (ChatGPT etc.) extrem viel Strom verbrauchen – da sie auf teuren Hardware-Plattformen wie GPUs laufen müssen - muss der Einsatz von KI auf Microchips möglichst ressourcensparend erfolgen, was große Herausforderungen im Entwicklungsprozess mit sich bringt.
Modellbasierter Entwurfsrahmen für Motorsteuerung und Wartung
Im Rahmen des Projekts wurde ein modellbasierter Entwurfsrahmen (Framework) erstellt, der folgende Bestandteile umfasst:
- Klar definierter Entwicklungsprozess
- Eingesetzte Werkzeuge
- Methode für den modellbasierten Systementwurf
Konkrete Fragestellungen werden derzeit bearbeitet
Die in ECOMAI gewählten Fragestellungen werden auch in konkreten Fallbeispielen bearbeitet, um die praktischen Auswirkungen der neuen wissenschaftlichen Ansätze besser zu erforschen. Diese sollen bis zum Ende des Forschungsvorhabens im Frühjahr 2025 erste Erfahrungen bringen, wie die Ziele des Projekts in der Praxis am besten zu erreichen sind.
Müller-Gritschneder abschließend: „Wir können bei ECOMAI Fachwissen aus den Bereichen Modellierung, Hardware-Design, Künstliche Intelligenz/Maschinelles Lernen, Konstruktion von elektrischen Motorantrieben und vorausschauende Wartung verbinden. Durch dieses breite Fundament von Forschungseinrichtungen bis hin zu Anbietern von Endprodukten stellen wir sicher, dass Innovationen des Projekts auch in kommerzielle Anwendungen übergeführt werden.“
Über den Forschungsbereich Embedded Computing Systems (ECS), Institut für technische Informatik, Technische Universität Wien
Die Bandbreite der Forschungs- und Lehraktivitäten am Forschungsbereich Embedded Computing Systems reicht von zuverlässigen und energieeffizienten digitalen Schaltungen, Entwurfsmethoden für integrierte Systeme bis hin zu vernetzten eingebetteten Systemen und fehlertoleranten verteilten Systemen. Prof. Daniel Müller-Gritschneder beschäftigt sich speziell mit Rapid-Prototyping-Methoden für maßgeschneiderte RISC-V-Prozessoren, ML-Compilern und Architekturen für eingebettetes maschinelles Lernen, sowie mit der funktionalen Sicherheit von Rechensystemen.
Trotz eines klaren Fokus auf wissenschaftliche Forschung reicht das Arbeitsspektrum von formal-mathematischer Analyse über simulationsbasierte experimentelle Evaluation bis hin zu prototypischen Implementierungen. In der Lehre ist die ECS-Forschungsgruppe vor allem für die entsprechenden Lehrveranstaltungen in den Bachelor- und Masterstudiengängen Technische Informatik zuständig.
Weitere Informationen finden Sie unter: https://informatics.tuwien.ac.at/orgs/e191-02