Contact
QR code for the current URL

Story Box-ID: 328950

TU Technische Universität Kaiserslautern Gottlieb-Daimler-Straße 47 67663 Kaiserslautern, Germany http://www.uni-kl.de
Contact Mr Prof. Dr. Martin Aeschlimann +49 631 2052322
Company logo of TU Technische Universität Kaiserslautern
TU Technische Universität Kaiserslautern

Die kleinste Lasershow der Welt

Das ultraschnelle Schalten nanooptischer Anregungen

(PresseBox) (Kaiserslautern, )
In einer Zusammenarbeit von Wissenschaftlern der Universitäten in Bielefeld, Kaiserslautern, Kiel und Würzburg wurde erstmals das ultraschnelle räumliche Schalten optischer Anregung auf der Nanometerskala demonstriert. Das im Wissenschaftsmagazin Proceedings of the National Academy of Sciences vorgestellte Experiment kombiniert Methoden der Ultrakurzpuls-Lasertechnologie und Nanostrukturtechnik, um optische Anregungen auf der Nanometerskala raumzeitlich zu steuern und nachzuweisen.

Im Alltag ist direkt erfahrbar, dass die räumliche und zeitliche Verteilung von Licht die visuelle Wirkung bestimmt. In einer Lasershow entstehen zum Beispiel durch das schnelle Schalten und Ablenken von Laserstrahlen unerwartete und auf andere Weise nicht erreichbare Lichteindrücke. Schnelles raumzeitliches Schalten von Licht ist aber nicht nur für ästhetische Lichteffekte relevant, sondern findet unter anderem in der Kommunikationstechnologie bei optischen Lichtwellenleitern oder in der Optoelektronik Anwendung. Mit herkömmlichen optischen Methoden kann die räumliche Verteilung von Licht im sichtbaren Spektralbereich bis hinab zu etwa einem halben Mikrometer (1 µm = 0.000001 m = 1000 nm) gezielt manipuliert und gesteuert werden. Ein halber Mikrometer (500 nm) ist zwar schon etwa 100 mal kleiner als der Durchmesser eines menschlichen Haares, aber für zukünftigen Anwendungen ist die Manipulation auf noch kleineren Längenskalen notwendig. Die Lichtmanipulation auf Bereichen von weniger als einem Zehntel eines Mikrometers (< 100 nm) könnte in der Mikroelektronik die angestrebten schnelleren und kleineren Bauelemente ermöglichen. Um Licht im Nanometerbereich zu beeinflussen, werden spezielle "Antennen" für das Licht benötigt. Das Licht wird durch diese metallischen Strukturen räumlich konzentriert und die optische Anregung kann dadurch auf Raumgebiete mit Ausdehnungen weit unterhalb der Lichtwellenlänge begrenzt werden. Durch die im Wissenschaftsmagazin Proceedings of the National Academy of Sciences vorgestellten Experimente konnte nun erstmals gezeigt werden, dass diese Konzentrierung der optischen Anregung zudem extrem schnell geschaltet werden kann, d.h. innerhalb von wenigen 10 fs (1 fs = 0.000'000'000'000'001 s) können räumlich getrennte Teile einer Nanostruktur gezielt und selektiv optisch angeregt werden.

Die grundlegende Idee des Experimentes besteht in der Kombination der Nahfeldoptik mit den Methoden der gezielten Formung von ultrakurzen Laserpulsen. Durch Manipulation des zeitlichen Verlaufs des anregenden Lichtimpulses wird in einer eigens für das Experiment entwickelten Nanoantenne eine sich räumlich und zeitlich entwickelnde Anregung erzeugt. Der zeitliche und räumliche Ablauf der optischen Anregung wird mittels einer stroboskopische Aufnahme durch ein Photoemissions-Elektronenmikroskop abgebildet und man erhält einen "Film" der Anregung der Nanoantenne. Dieses äußerst komplexe Experiment erfordert ein breites Methodenspektrum und Fachwissen, das nur durch die Kooperation von mehreren Universitäten realisiert werden konnte. Die durchgeführten Messungen demonstrieren ein Schalten innerhalb von ca. 50 fs zwischen etwa 200 nm entfernten Bereichen der Nanostruktur. Das Licht in der Umgebung der Nanostruktur weist somit eine komplexe raumzeitliche Entwicklung auf - oder in anderen Worten - es findet dort die kleinste und schnellste "Lasershow" der Welt statt.
The publisher indicated in each case (see company info by clicking on image/title or company info in the right-hand column) is solely responsible for the stories above, the event or job offer shown and for the image and audio material displayed. As a rule, the publisher is also the author of the texts and the attached image, audio and information material. The use of information published here is generally free of charge for personal information and editorial processing. Please clarify any copyright issues with the stated publisher before further use. In case of publication, please send a specimen copy to service@pressebox.de.
Important note:

Systematic data storage as well as the use of even parts of this database are only permitted with the written consent of unn | UNITED NEWS NETWORK GmbH.

unn | UNITED NEWS NETWORK GmbH 2002–2024, All rights reserved

The publisher indicated in each case (see company info by clicking on image/title or company info in the right-hand column) is solely responsible for the stories above, the event or job offer shown and for the image and audio material displayed. As a rule, the publisher is also the author of the texts and the attached image, audio and information material. The use of information published here is generally free of charge for personal information and editorial processing. Please clarify any copyright issues with the stated publisher before further use. In case of publication, please send a specimen copy to service@pressebox.de.